FLIPFLOPS

J.JENISHA ASSISTANT PROFESSOR DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOOGY KARUR - 639004

Overview

- Latches respond to trigger levels on control inputs
 - Example: If G = 1, input reflected at output
- Difficult to precisely time when to store data with latches
- Flip flips store data on a rising or falling trigger edge.
 - Example: control input transitions from 0 -> 1, data input appears at output
 - Data remains stable in the flip flop until until next rising edge.
- Different types of flip flops serve different functions
- Flip flops can be defined with characteristic functions

D Flip-Flop

- Stores a value on the positive edge of C
- Input changes at other times have no effect on output

D gets latched to Q on the rising edge of the clock riggered

Clocked D Flip-Flop

- Stores a value on the positive edge of C
- Input changes at other times have no effect on output

Positive and Negative Edge D Flip-Flop

- D flops can be triggered on positive or negative edge
- Bubble before *Clock (C)* input indicates negative edge trigger

(a) Positive-edge

(a) Negative-edge

Fig. 5-11 Graphic Symbol for Edge-Triggered D Flip-Flop

Positive Edge-Triggered J-K Flip-Flop

(a) Circuit diagram

(b) Graphic symbol

Fig. 5-12 JK Flip-Flop

Created from D flop

J sets

K resets

J=K=1 -> invert output

Clocked J-K Flip Flop

- Two data inputs, J and K
- J -> set, K -> reset, if J=K=1 then toggle output

JK FLIPFLOP OUTOUT

CLK	J	K	Q n	Q n+1	Q n+1
0	X	X	0/1	0/1	Q n
1	0 0	0 0	0 1	0 1	Q n
↑	0 0	1 1	0 1	0 0	0
1	1 1	0 0	0 1	1 1	1
↑	1 1	1 1	0 1	1 0	Q n '

Positive Edge-Triggered T Flip-Flop

(a) From JK flip-flop

(b) From D flip-flop

Fig. 5-13 T Flip-Flop

Created from D flop T=0 -> keep current

K resets

T=1 -> invert current

Qt	Q(t+1)	т
0	0	0
1	0	1
0	1	1
1	1	0

Summary

• Flip flops are powerful storage elements

– They can be constructed from gates and latches!

- D flip flop is simplest and most widely used
- Asynchronous inputs allow for clearing and presetting the flip flop output
- Multiple flops allow for data storage
 The basis of computer memory!
- Combine storage and logic to make a computation circuit.