Chettinad

College of Engineering \& Technology

Department of Mechanical Engineering

CE8403 APPLIED HYDRAULIC ENGINEERING
Unit II - GRADUALLY VARIED FLOW MCQ Bank

1. If the value of rate of change of specific energy is $7.79 \times 10^{-4} \mathrm{~m}$ and $\mathrm{S}_{\mathrm{f}}=0.00013$, calculate the value of bed slope.
a) 1 in 1000
b) $\mathbf{1}$ in $\mathbf{1 1 0 0}$
c) 1 in 1200
d) 1 in 1300

Answer: b
2. Calculate the rate of change of depth of a rectangular channel having depth 1 m and width 4 m . Given: $\mathrm{C}=40$, $\mathrm{S}_{0}=1 / 900, \mathrm{~S}_{\mathrm{f}}=0.0005$
a) $4.94 \times 10^{-4} \mathrm{~m}$
b) $5.94 \times 10^{-4} \mathrm{~m}$
c) $6.94 \times 10^{-4} \mathrm{~m}$
d) $7.94 \times 10^{-4} \mathrm{~m}$

Answer: c
3. Calculate the rate of change of depth of a triangular channel if the depth is 4 m and the side slope is $1 \mathrm{H}: 2 \mathrm{~V}$. Given: $\mathrm{S}_{0}=1$ in $1500 ; \mathrm{S}_{\mathrm{f}}=0.00004$ and $\mathrm{n}=0.010$.
a) $8.95 \times 10^{-4} \mathrm{~m}$
b) $9.95 \times 10^{-4} \mathrm{~m}$
c) $10.95 \times 10^{-4} \mathrm{~m}$
d) $11.95 \times 10^{-4} \mathrm{~m}$

Answer: a
4. Calculate the value of S_{f} for a trapezoidal channel having depth 2 m , width 5 m and side slope of $1 \mathrm{H}: 1.5 \mathrm{~V}$. Given: $d y / d x=1.18 \times 10^{-3}, \mathrm{~S}_{0}=1$ in $1000, \mathrm{C}=50$.
a) 0.00001
b) 0.00002
c) 0.00003
d) 0.00004

Answer: a
5. Determine the rate of change of depth of a rectangular channel having dimensions $2 \mathrm{~m} \times 3 \mathrm{~m}$ and the velocity of flow is $2 \mathrm{~m} / \mathrm{s}$.
Given: $\mathrm{S}_{0}=1$ in 500 and $\mathrm{S}_{\mathrm{f}}=0.0007$.
a) 0.63 m
b) 1.63 m
c) 2.63 m
d) 3.63 m

Answer: b
6. Calculate the velocity of flow in a triangular channel having depth 7 m and the side slope of the channel is $1 \mathrm{H}: 4 \mathrm{~V}$ if the bed slope of the channel is 1 in 1200 and the slope of the energy line is 0.00010 . Given:(dy)/dx=7.55m.
a) $1 \mathrm{~m} / \mathrm{s}$
b) $2 \mathrm{~m} / \mathrm{s}$
c) $3 \mathrm{~m} / \mathrm{s}$
d) $4 \mathrm{~m} / \mathrm{s}$

Answer: a
7. Calculate the value of bed slope of a trapezoidal channel having depth 2 m and width 2.5 m with a side slope of $1 \mathrm{H}: 3 \mathrm{~V}$. Given: $\mathrm{dy} / \mathrm{dx}=1.43 \times 10^{-3} ; \mathrm{S}_{\mathrm{f}}=0.00002 ; \mathrm{V}=1.5 \mathrm{~m} / \mathrm{s}$.
a) 1 in 1000
b) 1 in 900
c) $\mathbf{1}$ in $\mathbf{8 0 0}$
d) 1 in 700

Answer: c
8. The dimensions of a rectangular channel section is $2.5 \mathrm{~m} \times 1 \mathrm{~m}$. Calculate the value of $\mathrm{S}_{\mathrm{f}} \mathrm{if}$ the bed slope of the channel is 1 in 600 . Given: $d y / d x=1.52 \times 10^{-3} \mathrm{~m}$.
a) 0.0002
b) 0.0003
c) 0.0004
d) 0.0005

Answer: d
9. The dimensions of a rectangular channel section is $2.5 \mathrm{~m} \times 1 \mathrm{~m}$. Calculate the rate of change of specific energy if the rate of change of depth is $1.52 \times 10^{-3} \mathrm{~m}$.
a) $1.17 \times 10^{-3} \mathrm{~m}$
b) $2.00 \times 10^{-3} \mathrm{~m}$
c) $2.03 \times 10^{-3} \mathrm{~m}$
d) $2.06 \times 10^{-3} \mathrm{~m}$

Answer: a
10. Calculate the value of rate of change of specific energy for a triangular channel having depth 3.5 m and the side slope is $1 \mathrm{H}: 2 \mathrm{~V}$. Given: $\mathrm{V}=2.5 \mathrm{~m} / \mathrm{s}, \mathrm{dy} / \mathrm{dx}=8.6 \times 10^{-4}$.
a) $3.47 \times 10^{-4} \mathrm{~m}$
b) $4.47 \times 10^{-4} \mathrm{~m}$
c) $5.47 \times 10^{-4} \mathrm{~m}$
d) $6.47 \times 10^{-4} \mathrm{~m}$

Answer: c
11. What is the expression for head loss in case of a GVF?
a) $h_{f}=L / 2 S_{f}$
b) $\mathbf{h}_{\mathrm{f}}=\mathbf{L S} \mathbf{S}_{\mathrm{f}}$
c) $h_{f}=2 L S_{f}$
d) $h_{f}=3 L_{f}$

Answer: b
12. What is the expression for the length of the backwater curve?
a) $\mathrm{L}=\frac{E_{2}-E_{1}}{S_{f}-S_{0}}$
b) $\mathrm{L}=\frac{E_{2}-E_{1}}{S_{f}}$
c) $\mathrm{L}=\frac{E_{2}-E_{1}}{S_{0}-S_{f}}$
d) $\mathrm{L}=\frac{E_{2}-E_{1}}{S_{0}}$

Answer: c

13. Calculate the head loss if the length of the back water curve is 25000 m and $\mathrm{S}_{\mathrm{f}}=0.00006$.
a) 1 m
b) 1.5 m
c) 2.0 m
d) 2.5 m

Answer: b
14. Estimate the slope of energy line in a GVF having length of the back water curve 30000 m and head loss of 1 m .
a) 1.33×10^{-5}
b) 2.33×10^{-5}
c) 3.33×10^{-5}
d) 4.33×10^{-5}

Answer: c
15. Determine the length of the back water curve if $\mathrm{E}_{1}=2.8 \mathrm{~m}$ and $\mathrm{E}_{2}=5.6 \mathrm{~m}$. Given: $\mathrm{S}_{0}=0.00009 \mathrm{~S}_{\mathrm{f}}=0.00004$.
a) 26000 m
b) 36000 m
c) 46000 m
d) 56000 m

Answer: d
16. If the difference between specific energies is 2 m calculate the rate of change of specific energies if the length of the back water curve is 26314 m .
a) $6.6 \times 10^{-5} \mathrm{~m}$
b) $7.6 \times 10^{-5} \mathrm{~m}$
c) $8.6 \times 10^{-5} \mathrm{~m}$
d) $9.6 \times 10^{-5} \mathrm{~m}$

Answer: b
17. Calculate the bed slope of the channel if the slope of the energy line 0.00024 and the length of the back water curve is 104166.67 m . Given: $\mathrm{E}_{1}-\mathrm{E}_{2}=3 \mathrm{~m}$.
a) 2.28×10^{-5}
b) 3.28×10^{-5}
c) 4.28×10^{-5}
d) 5.28×10^{-5}

Answer: d
18. If the depths in a channel are 2 m and 4 m and the velocities are $0.5 \mathrm{~m} / \mathrm{s}$ and $0.3 \mathrm{~m} / \mathrm{s}$, calculate the difference between specific energies.
a) 2 m
b) 3 m
c) 4 m
d) 5 m

Answer: a
19. Calculate the slope of the energy line if the bed slope of the channel is 4.81×10^{-5} if the depths of the channel are 2.7 m and 4.7 m and velocities are $1 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$ respectively.
a) 0.00002
b) 0.00003
c) 0.00004
d) 0.00005

Answer: d
20. The dimensions of a rectangular channel is $3 \mathrm{~m} \times 2 \mathrm{~m}$ and the bed slope of the channel is 1 in 1000 , calculate the rate of change of depth if the rate of change of specific energy is $2 \times 10^{-5} \mathrm{~m}$. Given: $\mathrm{n}=0.010$
a) $1.43 \times 10^{-5} \mathrm{~m}$
b) $2.43 \times 10^{-5} \mathrm{~m}$
c) $3.43 \times 10^{-5} \mathrm{~m}$
d) $4.43 \times 10^{-5} \mathrm{~m}$

Answer: c
21. Specific energy in GVF changes only under which of the following conditions.
a) Difference between bed slope and slope of energy line
b) Both bed slope and energy slope are equal
c) Presence of bed slope alone
d) Presence of energy slope alone

Answer: a
22. The channel is prismatic in case of a GVF.
a) True
b) False

Answer: a
23. Calculate the value of frictional slope for a rectangular channel having width 5 m and depth 3 m . Given: $\mathrm{V}=2$ m / s and $\mathrm{n}=0.012$.
a) 2.01×10^{-4}
b) 3.01×10^{-4}
c) 4.01×10^{-4}
d) $\mathbf{5 . 0 1 \times 1 0 ^ { - 4 }}$

Answer: d
24. Calculate the frictional slope of a triangular channel having depth 2.5 m and side slope of $1 \mathrm{H}: 2 \mathrm{~V}$ if the rate of change of specific energy is $1.6 \times 10^{-5} \mathrm{~m} / \mathrm{s}$. Given: $\mathrm{V}=1.57 \mathrm{~m} / \mathrm{s}$
a) $5.53 \times 10^{-4} \mathrm{~m}$
b) $6.53 \times 10^{-4} \mathrm{~m}$
c) $7.53 \times 10^{-4} \mathrm{~m}$
d) $8.53 \times 10^{-4} \mathrm{~m}$

Answer: c
25. What happens to the depth of flow when there is an obstruction in the path?
a) Remains the same
b) Increases
c) Decreases
d) Flow stops

Answer: b
26. Calculate the value of Froude's number if the ratio of rate of change of specific energy and rate of change of depth is 0.9 .
a) 0.29
b) 0.30
c) 0.31
d) 0.32

Answer: c
27. Which of the following assumptions is true in case of GVF?
a) The flow is not steady
b) The streamlines are parallel
c) Pressure distribution is not hydrostatic
d) Channel has varying alignment and shape

Answer: b
28. The ratio of bed slope and the slope of energy line is 2 , calculate the value of slope of energy line if the length of back water curve is 20000 m . Given: $\mathrm{E}_{1}=2 \mathrm{~m}$ and $\mathrm{E}_{2}=5 \mathrm{~m}$.
a) 0.5×10^{-4}
b) 1.0×10^{-4}
c) 1.5×10^{-4}
d) 2.0×10^{-4}

Answer: c

