

Department of Computer Science and Engineering CS8603 Distributed Systems Unit III - MCQ Bank

1.	If deadlocks occur frequently, the detection algorithm must be invoked _	
	a) rarely	

- b) frequently
- c) rarely & frequently
- d) none of the mentioned
- 2. What is the disadvantage of invoking the detection algorithm for every request?
 - a) overhead of the detection algorithm due to consumption of memory
 - b) excessive time consumed in the request to be allocated memory
 - c) considerable overhead in computation time
 - d) all of the mentioned
- 3. A deadlock eventually cripples system throughput and will cause the CPU utilization to
 - a) increase
 - b) drop
 - c) stay still
 - d) none of the mentioned
- 4. Every time a request for allocation cannot be granted immediately, the detection algorithm is invoked. This will help identify _
 - a) the set of processes that have been deadlocked
 - b) the set of processes in the deadlock queue
 - c) the specific process that caused the deadlock
 - d) all of the mentioned
- 5. Invoking periodically to test for deadlock is one of the way for deadlock_
 - a) Prevention
 - b) Avoidance
 - c) Detection
 - d) Deletion
- 6. With deadlock detection, request resources are granted to
 - a) Resources
 - b) Programs
 - c) Processes
 - d) Users

7.	a)b)c)	ect method of deadlock prevention is to prevent the occurrence of a Mutual exclusion Hold and Wait Preemption Circular wait
8.	Maek	tawa's algorithm is a mutual exclusion algorithm.
	a)	Token-based
	b)	Voting-based
	c)	Non-token based
	d)	Tree-based
9.		is a process that prevents multiple threads or processes from accessing shared
	resou	rces at the same time
	a)	Deadlock
	b)	Crictical section
	c)	Mutual exclusion
	d)	Message passing
10.	Selec	ct NON-token-based algorithm from the options below.
		Suzuki–Kasami's Broadcast Algorithm
		Singhal's Heuristic Algorithm
		Raymond's Tree-Based Algorithm
	d)	Ricart-Agrawala Algorithm
11	Num	ber of message required in Ricart Agrawala Algorithm is?
11.		3(N-1)
	,	2(N-1)
		3vN
	d)	
	, 1	
12.	Num	ber of message required in Suzuki Kasami algorithm is
	a)	3(N-1)
	b)	2(N-1)
	c)	0 or N
	d)	0 or (N-1)
13.	In Su	zuki Kasmi, When site Si receives a REQUEST(j, n) message, it sets
		RNi [j]:= $max(RNi [j], n)$
		RNi [j]:= Min(RNi [j], n)
		RNi [j]:= $Avg(RNi [j], n)$
		None of these

- 14. A distributed system is defined as a collection of autonomous computers linked by a network with software designed to produce an integrated computing facility. True or False?
 - (a) False
 - (b) True
- 15. Which amongst the following is not an advantage of Distributed systems?
 - (a) Resource sharing
 - (b) Incremental growth
 - (c) Reliability
 - (d) None of the above
- 16. Which of the following will be true distributed system?
 - a) tightly-coupled software on loosely-coupled hardware
 - b) loosely-coupled software on tightly-coupled hardware
 - c) tightly-coupled software on tightly-coupled hardware
 - d) loosely-coupled software on loosely-coupled hardware
- 17. Distributed systems should?
 - a) high security
 - b) have better resource sharing
 - c) better system utilization
 - d) low system overhead
- 18. In distributed systems, link and site failure is detected by _
 - a) polling
 - b) handshaking
 - c) token passing
 - d) none of the mentioned
- 19. Consider the following statements:

Statement 1: When two processes are competing with each other causing data corruption, it is called deadlock.

Statement 2: When two processes are waiting for each other directly or indirectly, it is called race condition.

- a) Only statement 1 is true
- b) Only statement 2 is true
- c) Both statements are true
- d) Both statements are false

20. Assign Lamport timestamps to the events (a, b, c, d, e, f) as shown in the figure:

- a) a: 6, b: 2, c: 6, d: 7, e: 7, f: 8
- b) a: 1, b: 2, c: 2, d: 3, e: 4, f: 2
- c) a: 6, b: 7, c: 6, d: 7, e: 7, f: 8
- d) a: 6, b: 7, c: 6, d: 7, e: 8, f: 9
- 21. The Chandy-Lamport global snapshot algorithm works correctly for non-FIFO channels.
 - a) True
 - b) False
- 22. Find out the correct property to solve mutual exclusion in distributed system: Property 1: At most one process executes in critical section at any time

Property 2: Every request for a critical section is granted eventually

Property 3: Requests are granted in the order they were made

- a) Property 1: Liveness, Property 2: Fairness, Property 3: Safety
- b) Property 1: Safety, Property 2: Fairness, Property 3: Liveness
- c) Property 1: Fairness, Property 2: Safety, Property 3: Liveness
- d) Property 1: Safety, Property 2: Liveness, Property 3: Fairness
- 23. Consider the following statements:

Statement 1: Lamport's algorithm achieves mutual exclusion.

Statement 2: Lamport's algorithm is fair.

- a) Only statement 1 is true
- b) Only statement 2 is true
- c) Both statements are true
- d) Both statements are false
- provides Advisory locks only and doesn't guarantee mutual exclusion unless every client checks lock before accessing resource.
 - a) Paxos
 - b) Cassandra
 - c) Google's Chubby

- d) Microsoft Azure
- 25. Consider the following statement: "In Suzuki-Kasami's Broadcast Algorithm, if a site does not hold the token when it makes a request, the algorithm requires 5N-1 messages to obtain the token."
 - a) True
 - b) False
- 26. Which of the following for Mutual exclusion can be provided by the
 - a) mutex locks
 - b) binary semaphores
 - c) both mutex locks and binary semaphores
 - d) none of the mentioned
- 27. Suzuki-Kasami's Broadcast Algorithm is an
 - a) Non-token based algorithm.
 - b) Token based algorithm.
 - c) Centralized Based algorithm
 - d) physical clock synchronization algorithm.
- 28. Which mutual exclusion algorithm works when the membership of the group is unknown?
 - a) Centralized.
 - b) Ricart-Agrawala.
 - c) Lamport.
 - d) Token Ring.

29. I	In distributed sy	ystem, each i	processor has	its own	
-------	-------------------	---------------	---------------	---------	--

- a) local memory and clock
- b) Battery
- c) Remote Memory
- d) Display
- 30. In _____ only one process at a time is allowed into its critical section, among all processes that have critical sections for the same resource.
 - a) Mutual Exclusion
 - b) Synchronization
 - c) Deadlock
 - d) Starvation