Department of Computer Science and Engineering MA8402 - Probability and Queueing Theory Unit I - MCQ Bank

1.Given $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=0.9$, then:
A. A and B are not mutually exclusive events
B. A and B are equally likely events
C. A and Bareindependent events
D. A and B are mutually exclusive events

Answer: (D)
2. If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots, \mathrm{~A}_{\mathrm{k}}$ are k mutually exclusive events, then:
A. $\mathbf{P}\left(\mathbf{A}_{1} \mathrm{UA}_{2} \mathrm{UA}_{3} \mathrm{U} \ldots \mathrm{UA}_{\mathrm{k}}\right)=\mathbf{P}\left(\mathbf{A}_{1}\right)+\mathbf{P}\left(\mathbf{A}_{2}\right)+\mathbf{P}\left(\mathbf{A}_{3}\right)+\ldots+\mathbf{P}\left(\mathbf{A}_{k}\right)$
B. $\mathrm{P}\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \cup \ldots \mathrm{~A}_{k}\right)>1$
C. $\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3} \cap \ldots \cap \mathrm{~A}_{\mathrm{k}}\right)=1$
D. $\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3} \cap \ldots \cap \mathrm{~A}_{\mathrm{k}}\right)=\mathrm{P}\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup_{A_{3}} \cup \ldots \cup A_{k}\right)$

Answer: (A)
3. $E[X-E(X)]^{2}$ is:
A. $\mathrm{E}(\mathrm{X})$
B. $\mathrm{E}\left(\mathrm{X}^{2}\right)$
C. $\operatorname{Var}(X)$
D. $\mathrm{S} . \mathrm{D}(\mathrm{X})$

Answer: (C)
4. $\operatorname{Var}(4 X+8)$ is:
A. $12 \operatorname{Var}(\mathrm{X})$
B. $4 \operatorname{Var}(\mathrm{X})+8$
C. $16 \operatorname{Var}(X)$
D. $16 \operatorname{Var}(\mathrm{X})+8$

Answer: (C)
5. The probability function of a random variable is defined as:

x	-1	-2	0	1	2
$f(x)$	k	$2 k$	$3 k$	$4 k$	$5 k$

Then k is equal to:
A. Zero
B. $1 / 4$
C. $1 / 15$
D. One

Answer: (C)
6. An expected value of a random variable is equal to its:
A. Variance
B. Standard deviation
C. Mean
D. Covariance

Answer: (C)
7. $\operatorname{Var}(\mathrm{X})$ is equal to:
A. $\mathrm{E}\left(\mathrm{X}^{2}\right)$
B. $[\mathrm{E}(\mathrm{X})]^{2}$
C. $\mathbf{E}\left(\mathbf{X}^{2}\right)-[\mathbf{E}(\mathbf{X})]^{2}$
D. $\mathrm{E}\left(\mathrm{X}^{2}\right)+[\mathrm{E}(\mathrm{X})]^{2}$

Answer: (C)
8. The mean and standard deviation of the binomial probability distribution 'are respectively:
A. $n p$ and $n p q$
B. np and $\sqrt{\boldsymbol{n p q}}$
C. np and nq
D. n and p

Answer: (B)
9. The Pdf of a random variable X is $f(x)=2 x, 0<x<1$, find the p.d.f of $Y=3 x+1$
A. $\frac{2}{9}(y-1), 1<y<4$.
B. $(\boldsymbol{y}-\mathbf{1}), \mathbf{1}<y<4$.
C. $(\boldsymbol{y}+\mathbf{1}), \mathbf{1}<y<2$.
D. $\frac{2}{9}(y-1), 10<y<4$.

Answer: (A)
10. If a random variable X takes the value $1,2,3,4$ such that $2 P(X=1)=3 P(X=2)=P(X=3)=5 P(X=4)$. Find the probability distribution of X .
A. $\mathrm{k}=\frac{29}{30}$
B. $\mathrm{k}=\frac{30}{61}$
C. $\mathrm{k}=\frac{61}{30}$
D. $k=\frac{30}{49}$

Answer: (B)
11.The relationship between probability distribution function $F(x)$ and the probability density function $f(x)$ is
A. $f(x)=\frac{d}{d x} F(x)$
B. $f(x)=\frac{d^{2}}{d x^{2}} F(x)$
C. $f^{2}(x)=\frac{d}{d x} F(x)$
D. $f(x)=\frac{d}{d x} F^{2}(x)$

Answer: (A)
12. $E(a \mathrm{X}+b)=$
A. $a E(x)$
B. $\boldsymbol{a} \boldsymbol{E}(\boldsymbol{x})+\boldsymbol{b}$
C. $a^{2} E(x)+b$
D. $E(x)+b$

Answer: (B)

13. For a binomial distribution, mean is 6 and standard deviation is $\sqrt{ } 2$, find ' n '.
A. 0
B. 9
C. 1
D. 4

Answer: (B)
14. A CRV ' X ' has pdf given by $f(x)=3 x^{2}, 0 \leq x \leq 1$. Find K such that $P(x>K)=0.05$.
A. 0.3456
B. 0.7410
C. 0.7890
D. 0.9830

Answer: (D)
15.The MGF of Binomial distribution is
A. $\left(\boldsymbol{q}+\boldsymbol{p} \boldsymbol{e}^{t}\right)^{\boldsymbol{n}}$
B. $(p+q)^{n}$
C. $\left(p+q e^{t}\right)^{n}$
D. $(\mathrm{q}+\mathrm{p})$

Answer: (A)
16. The mean of the binomial distribution is 20 and standard deviation is 4 . Find the parameters of the distribution.
A. $q=3 / 5, p=7 / 5, n=100$
B. $q=4 / 5, p=1 / 5, n=100$
C. $q=7 / 5, p=3 / 5, n=100$
D. $q=9 / 5, p=11 / 5, n=100$

Answer: (B)
17. If ' X ' is a uniform variable in [-2,2], find the mean and variance of ' X '.
A. $1,5 / 3$
B. $0,7 / 3$
C. 0,4/3
D. $1,4 / 3$

Answer: (C)
18. X is a discrete R . V having the p.m.f
$\mathrm{X}:-1 \quad 0 \quad 1$
$P(X): k \quad 2 k 3 k$. Find $P(X \geq 0)$.
A. $\mathrm{k}=5 / 6 . \mathrm{P}(\mathrm{X} \geq 0)=1 / 6$.
B. $\mathrm{k}=7 / 6 . \mathrm{P}(\mathrm{X} \geq 0)=11 / 6$.
C. $k=5 / 6 . P(X \geq 0)=5 / 6$.
D. $k=\mathbf{1 / 6} . ~ P(X \geq 0)=5 / 6$.

Answer: (D)
MA8402 - Probability And Queueing Theory
19. The random variable X has the p.m.f. $P(x)=x / 15, x=1,2,3,4,5$ and $=0$ elsewhere. find $\mathrm{P}(1 / 2<\mathrm{X}<5 / 2 / \mathrm{X}>1)$.
A. 1/7.
B. 7/9.
C. 5/9.
D. $1 / 6$

Answer: (A)
20. A dice is thrown 3 times. If getting a ' 6 ' is considered a success, find the probability of at least two successes.
A. $\mathrm{p}=7 / 6, \mathrm{q}=11 / 6, \mathrm{n}=3, \mathrm{P}($ at least two successes $)=1 / 27$
B. $p=1 / 6, q=7 / 6, n=3, P($ at least two successes $)=5 / 27$
C. $p=5 / 6, q=5 / 6, n=3, P($ at least two successes $)=2 / 27$
D. $p=\mathbf{1 / 6}, q=5 / 6, n=3, P($ at least two successes $)=\mathbf{2 / 2 7}$

Answer: (D)
21. If the p.d.f of a R.V.X is $f(x)=x / 2$ in $0 \leq x \leq 2$, find $P(X>1.5 / X>1)$.
A. 0.7833
B. 0.9833
C. 0.5833
D. 0.3833

Answer: (C)
22. The density function of a random variable ' X ' is given by $f(x)=K x(2-x), 0 \leq x \leq 2$. Find K.
A. $\mathrm{k}=7 / 4$.
B. $k=3 / 4$.
C. $\mathrm{k}=11 / 6$
D. $\mathrm{k}=1 / 6$.

Answer: (B)
23.If MGF of X is $\left(5-4 e^{t}\right)^{-1}$, find the distribution of X and $\mathrm{P}(\mathrm{x}=5)$.
A. $\mathrm{P}(\mathrm{x}=5)=\frac{4^{5}}{5^{6}}$
B. $P(x=5)=\frac{5^{5}}{7^{6}}$
C. $P(x=5)=\frac{7^{5}}{5^{6}}$
D. $P(x=5)=\frac{9^{5}}{5^{6}}$

Answer: (A)
24. A binomial random variable is approximated to Poisson random variable when sample value is and probability is close -----------.
A. Small, zero.
B. large, zero.
C. large, one.
D. Small, Two.

Answer: (B)
25. Poisson distribution is not a \qquad
A. Asymmetrical
B. Equal
C. Symmetrical
D. bell shaped

Answer: (C)

